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We consider the possibilities of applying the laws governing the dis-
tribution of heat in bodies of finite dimensions to the calculation of
the heating of bodies by radiative heat. ’

The temperature field developed in bodies of finite
dimensions assumes the particularly interesting prop-
erty of being made to conform by the temperature dis-
tribution to the length of the coordinate axes or to the
body surface. The form of this coordination relation-
ship is governed by the conditions under which the
prucess takes place. If the mathematical description
of the phenomenon periits us to seek the solution of
the problem in the form of the product of the functions
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and it can therefore be treated as the law governing
the relationship between the temperatures, or what is
the same, as the law governing the distribution of heat
in bodies of finite dimensions. If the mathematical de-
scription of the phenomenon permits us to seek the
“solution of the problem in the form of the sum of the
functions

8(X; Y; Fo) = P(X; Fo) + D(V; Fo),
the coordination relationship is also found strictly as
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and can be treated as the law governing the relation-
ship between temperatures or governing the distribu-
tion of heat in bodies of finite dimensions.

The first form for the heat-distribution law in bod-
ies of finite dimensions was derived in the form of (1)
and (2) in reference [1]. The second form of the law
was established in the form of (3) and (4) in [2]. Each
of these laws is remarkable in that neither incorpo-
rates the values for the thermophysical characteris-

720

tics of the materials., Direct measurement of the tem-
perature distributions over the coordinate axes or the
surface of the body therefore makes it possible to cal-
culate indirectly the temperature field within the body
without first knowing the values of the thermal con-
ductivity, heat capacity, or density of the material.
As an example of a case corresponding to the first
form of the heat-distribution law we can cite the regu-
lar period for the convective heating of a beam of
rectangular or square cross section. As an example
of the conditions subject to the second form of the dis-
tribution law we can offer the process of heating a
beam of rectangular or square cross section by a con-
tinuous flow of heat [3 and 4]:
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The authors of communications [5—~7]}, having taken
the idea from [1], were able to derive approximate
formulas to relate the temperatures of bodies with
finite dimensions in the case of radiative heat exchange.
The particular value of these approximation formulas
lies in the fact that they have demonstrated the possi-
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Heating of square bar by radiant heat
at Ki = 0.5; ® = 0.15; 1) fin tempera-
ture; 2) side temperature; 3) center
temperature (curves, computer data;
points, calculation according to (10)).



Determination of Temperature in the Center of a Square Beam

Ki=0.3, 8, =0.15
¢ tor dat | Resutts % of
omputer data b O
e ‘,[ Fa.q0)] diver-
(1 Y; Fo) | 9(); L Fo) | 8(X; 1; Fo) | 8(0:0: Fo) | ¢0; 0; Fo) | gence
|

0,002 0.1586 0,1682 | 0,1586 0.1500 0.1500 0,00
0.006 - 0,1714 0.1937 0,1714 0.1500 0.1500 0,00
0.010 0,1800 0.2110 0,1800 0.1500 0,1500 .00
0.042 0.2153 0.2814 0.2153 0.1500 0,1500 0,00
0.092 0.2510 0.3490 0.2510 0.1521 0,1521 0,00
0.2 - 0.3171 0.4457 0,3171 0.1853 0,1860 0,38
0.4 0.4324 (.5671 0,4324 0.2891 0,2900 .31
0.6 0.5417 0.6654 0.5417 0.4032 0,4080 1,19
0.8 0,6389 0.7463 0.6389 0.5114 0.5160 0,90
1,2 0.7907 0.8618 0 7907 0,6957 0.6980 0.33

bility of applying all of the concepts stated in [1] even
to the case of radiation heating.

In their writings, the authors of [5~7] proceeded
on the basis of the first form of the heat-distribution
law for bodies of finite dimensions. For similar pur-
poses it is apparently wiser to rely on expressions
corresponding to the second form of the distribution
law. Using the substitution.

¢ (X; Y; Fo)
1
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it is possible, in a certain approximation [8], to re-
place Egs. (58)—(8) by the following system:
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This system describes the process of heating a rec-
tangular or square beam by radiated heat. According
to law (4) and substitution (9), we will now have

{Arth@ (X, Y; Fo) + arctg @ (X; Y, Fo)]
= [Arth B (l; ¥; Fo) —
+ arctg © (1; Y; Fo)] 4 [Arth© (X; 1; Fo)
4 arctg©(Xx; I; Fo)l —
—[Arth©(1; 1; Fo) +arctg®(1; 1; Fo)|. (10)
Equation {10) gives the approximate relationship

between the temperatures in radiation-heated bodies
of finite dimensions. Using this equation, we can de~
termine the temperature of any point within the body
from the known temperatures at the surface. Here
there is also no need to know the thermal conductivity,
the heat capacity, nor thedensity of the material. Equa-
tion (10}, just as law (4), is valid for all stages of the
heating process (including the initial and ordered pe~

riods). And it is only because of the approximate na-
ture of substitution (9) that the use of (10) is limited
to the values of the Kirpichev radiation number (less
than 0.6) (see the figure and the table). In any event,
the calculation error is reduced with a reduction in
the Kirpichev number, an increase in the dimension-
less initial temperature, and with increasing distance
between the point under consideration and the cenfer of
the body.
A formula such as (10) can be derived for a parallel-
epiped and a short c¢ylinder, :
Thus on the basis of the laws governing the distribu-
tion of heat in bodies of finite dimensions we can de~
rive approximate relationships which are similar to
these in terms of their significance and which are ap-

plicable to the conditions of radiative heat exchange at

the boundaries.

NOTATION

0 = T/Tm is the dimensionless temperature; X and
Y are dimensionless coordinates; Fo = g7/R? ig the
Fourier number; Ki = qyuR/ATy, is the Kirpichev num-~
ber.
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